PHP – CPU Usage Information

For this, we are going to utilize the getrusage() function. Keep in mind that this is not available on Windows platforms.

print_r(getrusage());
/* prints
Array
(
[ru_oublock] => 0
[ru_inblock] => 0
[ru_msgsnd] => 2
[ru_msgrcv] => 3
[ru_maxrss] => 12692
[ru_ixrss] => 764
[ru_idrss] => 3864
[ru_minflt] => 94
[ru_majflt] => 0
[ru_nsignals] => 1
[ru_nvcsw] => 67
[ru_nivcsw] => 4
[ru_nswap] => 0
[ru_utime.tv_usec] => 0
[ru_utime.tv_sec] => 0
[ru_stime.tv_usec] => 6269
[ru_stime.tv_sec] => 0
)

*/

That may look a bit cryptic unless you already have a system administration background. Here is the explanation of each value (you don’t need to memorize these):

ru_oublock: block output operations
ru_inblock: block input operations
ru_msgsnd: messages sent
ru_msgrcv: messages received
ru_maxrss: maximum resident set size
ru_ixrss: integral shared memory size
ru_idrss: integral unshared data size
ru_minflt: page reclaims
ru_majflt: page faults
ru_nsignals: signals received
ru_nvcsw: voluntary context switches
ru_nivcsw: involuntary context switches
ru_nswap: swaps
ru_utime.tv_usec: user time used (microseconds)
ru_utime.tv_sec: user time used (seconds)
ru_stime.tv_usec: system time used (microseconds)
ru_stime.tv_sec: system time used (seconds)

To see how much CPU power the script has consumed, we need to look at the ‘user time’ and ‘system time’ values. The seconds and microseconds portions are provided separately by default. You can divide the microseconds value by 1 million, and add it to the seconds value, to get the total seconds as a decimal number.

Let’s see an example:

// sleep for 3 seconds (non-busy)
sleep(3);

$data = getrusage();
echo "User time: ".
($data['ru_utime.tv_sec'] +
$data['ru_utime.tv_usec'] / 1000000);
echo "System time: ".
($data['ru_stime.tv_sec'] +
$data['ru_stime.tv_usec'] / 1000000);

/* prints
User time: 0.011552
System time: 0
*/

Even though the script took about 3 seconds to run, the CPU usage was very very low. Because during the sleep operation, the script actually does not consume CPU resources. There are many other tasks that may take real time, but may not use CPU time, like waiting for disk operations. So as you see, the CPU usage and the actual length of the runtime are not always the same.

Here is another example:

// loop 10 million times (busy)
for($i=0;$i<10000000;$i++) {

}

$data = getrusage();
echo "User time: ".
($data['ru_utime.tv_sec'] +
$data['ru_utime.tv_usec'] / 1000000);
echo "System time: ".
($data['ru_stime.tv_sec'] +
$data['ru_stime.tv_usec'] / 1000000);

/* prints
User time: 1.424592
System time: 0.004204
*/

That took about 1.4 seconds of CPU time, almost all of which was user time, since there were no system calls.

System Time is the amount of time the CPU spends performing system calls for the kernel on the program’s behalf. Here is an example of that:

$start = microtime(true);
// keep calling microtime for about 3 seconds
while(microtime(true) - $start < 3) {

}

$data = getrusage();
echo "User time: ".
($data['ru_utime.tv_sec'] +
$data['ru_utime.tv_usec'] / 1000000);
echo "System time: ".
($data['ru_stime.tv_sec'] +
$data['ru_stime.tv_usec'] / 1000000);

/* prints
User time: 1.088171
System time: 1.675315
*/

Now we have quite a bit of system time usage. This is because the script calls the microtime() function many times, which performs a request through the operating system to fetch the time.

Also you may notice the numbers do not quite add up to 3 seconds. This is because there were probably other processes on the server as well, and the script was not using 100% CPU for the whole duration of the 3 seconds.

For this, we are going to utilize the getrusage() function. Keep in mind that this is not available on Windows platforms.

print_r(getrusage());
/* prints
Array
(
[ru_oublock] => 0
[ru_inblock] => 0
[ru_msgsnd] => 2
[ru_msgrcv] => 3
[ru_maxrss] => 12692
[ru_ixrss] => 764
[ru_idrss] => 3864
[ru_minflt] => 94
[ru_majflt] => 0
[ru_nsignals] => 1
[ru_nvcsw] => 67
[ru_nivcsw] => 4
[ru_nswap] => 0
[ru_utime.tv_usec] => 0
[ru_utime.tv_sec] => 0
[ru_stime.tv_usec] => 6269
[ru_stime.tv_sec] => 0
)

*/

That may look a bit cryptic unless you already have a system administration background. Here is the explanation of each value (you don’t need to memorize these):

ru_oublock: block output operations
ru_inblock: block input operations
ru_msgsnd: messages sent
ru_msgrcv: messages received
ru_maxrss: maximum resident set size
ru_ixrss: integral shared memory size
ru_idrss: integral unshared data size
ru_minflt: page reclaims
ru_majflt: page faults
ru_nsignals: signals received
ru_nvcsw: voluntary context switches
ru_nivcsw: involuntary context switches
ru_nswap: swaps
ru_utime.tv_usec: user time used (microseconds)
ru_utime.tv_sec: user time used (seconds)
ru_stime.tv_usec: system time used (microseconds)
ru_stime.tv_sec: system time used (seconds)

To see how much CPU power the script has consumed, we need to look at the ‘user time’ and ‘system time’ values. The seconds and microseconds portions are provided separately by default. You can divide the microseconds value by 1 million, and add it to the seconds value, to get the total seconds as a decimal number.

Let’s see an example:

// sleep for 3 seconds (non-busy)
sleep(3);

$data = getrusage();
echo "User time: ".
($data['ru_utime.tv_sec'] +
$data['ru_utime.tv_usec'] / 1000000);
echo "System time: ".
($data['ru_stime.tv_sec'] +
$data['ru_stime.tv_usec'] / 1000000);

/* prints
User time: 0.011552
System time: 0
*/

Even though the script took about 3 seconds to run, the CPU usage was very very low. Because during the sleep operation, the script actually does not consume CPU resources. There are many other tasks that may take real time, but may not use CPU time, like waiting for disk operations. So as you see, the CPU usage and the actual length of the runtime are not always the same.

Here is another example:

// loop 10 million times (busy)
for($i=0;$i<10000000;$i++) {

}

$data = getrusage();
echo "User time: ".
($data['ru_utime.tv_sec'] +
$data['ru_utime.tv_usec'] / 1000000);
echo "System time: ".
($data['ru_stime.tv_sec'] +
$data['ru_stime.tv_usec'] / 1000000);

/* prints
User time: 1.424592
System time: 0.004204
*/

That took about 1.4 seconds of CPU time, almost all of which was user time, since there were no system calls.

System Time is the amount of time the CPU spends performing system calls for the kernel on the program’s behalf. Here is an example of that:

$start = microtime(true);
// keep calling microtime for about 3 seconds
while(microtime(true) - $start < 3) {

}

$data = getrusage();
echo "User time: ".
($data['ru_utime.tv_sec'] +
$data['ru_utime.tv_usec'] / 1000000);
echo "System time: ".
($data['ru_stime.tv_sec'] +
$data['ru_stime.tv_usec'] / 1000000);

/* prints
User time: 1.088171
System time: 1.675315
*/

Now we have quite a bit of system time usage. This is because the script calls the microtime() function many times, which performs a request through the operating system to fetch the time.

Also you may notice the numbers do not quite add up to 3 seconds. This is because there were probably other processes on the server as well, and the script was not using 100% CPU for the whole duration of the 3 seconds.

Leave a Reply

Your email address will not be published. Required fields are marked *

*